equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.



Ordenação de tempo

na mecânica eneralizada Graceli - QUÂNTICA DIMENSIONAL TENSORIAL RELATIVISTA DE CAMPOS.





Na teoria quântica de campos a ordenação de tempo é útil para tirar produto de operadores. Esta operação é designada por .[1] Para dois operadores A (x) e B (y), que dependem em locais de espaço-tempo x e y nós definimos:

 
 G* =  =    /     G*       /   -

Aqui  and  designam as coordenadas-tempo dos pontos x e y.[2]

De forma explícita temos

 G* =  =    /     G*       /   -

onde  representa a função de passo Heaviside e o  depende se os operadores em natureza são Bósonicos ou Férmionicos. Se bosônico, então o sinal de  é sempre escolhido, se fermiônico então, o sinal vai depender do número de interligação necessárias para atingir o operador de ordem temporal adequada.[3]

Uma vez que os operadores dependem de sua localização no espaço-tempo (ou seja, não apenas no tempo), esta operação em ordenação de tempo só é coordenada independente se os operadores do tipo espacial [nota 1] em pontos separados comutam.[4] Note que a ordenação tempo é em geral escrita com o argumento de tempo aumentando da direita para a esquerda. Em geral, para o produto de n operadores de campo A1(t1), …, An(tn) o produto do tempo ordenado dos operadores são definidos da seguinte forma:

 G* =  =    /     G*       /   -

onde a soma é executada em todo p's e sobre o grupo simétrico[5] [nota 2] n graus de permutações e

Matriz de dispersão

A matriz de dispersão [nota 3](ou matriz de espalhamento[6]) de em teoria quântica de campos é um exemplo de um produto de tempo ordenado. A matriz de dispersão transformando o estado em t =−∞ para um estado em t = +∞, pode também ser considerada como uma espécie de "holonomia[7]", análoga à linha de Wilson. Obtemos uma expressão ordenada no tempo devido ao seguinte motivo:


Agora, considere a evolução discretizada do operador

 G* =  =    /     G*       /   -

onde  é o operador de evolução ao longo de um intervalo  de tempo infinitesimal. Os termos de ordem superiores podem ser negligenciados no limite . O operador  é definido por

 G* =  =    /     G*       /   -

Note-se que os operadores de evolução ao longo dos intervalos de tempo "passado" é exibido no lado direito do produto. Nós vemos que a fórmula é análoga à identidade acima satisfeita pelo exponencial, e podemos escrever

 G* =  =    /     G*       /   -

A única sutileza que tivemos que incluir foi o operador  de ordenação de tempo porque os fatores no produto que definem S acima foram tempo-ordenados, também (e os operadores não comutam, em geral) e o operador  garante que este ordenação será preservada.






Estatística quântica

Com o advento da Mecânica quântica as noções de distinção das partículas subatômicas e da ocupação de estados de energia sofreram sérias reformulações.

No começo do século XXBoltzmann havia chegado a forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.

Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.

Uma trajetória implica o deslocamento de uma partícula (idealizada como um ponto matemático) no espaço e no tempo. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.

Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos, a saber: o efeito fotoelétrico, o calor específico dos sólidos e a relatividade); esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos para as moléculas e átomos, assim como também as partículas movidas, fossem elas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já eram admissíveis.

Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg e pela interpretação estatística da Função de onda dada por Max Born foi totalmente por terra a noção de que a partícula tinha trajetória definida.

Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identifica-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:

[Xk,Pl] = i  G* =  =    /     G*       /   -

onde Xk representa o operador posição, Pl representa o operador Momento linear e  o operador identidade.

Dentro desse entendimento, a distribuição de Boltzmann não é mais válida, senão como aproximação. Verificou-se que as distribuições válidas para partículas com carácter manifestamente quântico, são as seguintes:

A primeira é válida para partículas de Spin semi-inteiro( 1/2, 3/2, 5/2...),em unidades de , ou seja, para os férmions, ao passo que a segunda é a distribuição válida para partículas de spin inteiro (0,1,2,3...), ou seja, para os bósons.

Pode-se explicar qualitativa e sucintamente, de forma simplificada, que para os férmions as funções de onda são funções anti-simétricas, ou seja, trocam de sinal perante a troca simultânea das coordenadas espaciais e das coordenadas de spin entre dois férmions.

Comentários

Postagens mais visitadas deste blog